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I i , 

REPORT ON PHASE IV 

EXPERIMENTAL STUDY 

INT RODU CT ION 

Phase  IV work was ca r r i ed  out in close conjunction with the program of 

Phase  111, in view of the need to investigate technical a r e a s  where redesign 

could only be finalized after tentative changes yielded the necessary  performance 

data. 

Major a r e a s  of redesign evaluationwere the following: 

1. Targe t  pedestal 

2. Visual microscope 

3.  Optics alignment 

4. Scanning elements 

5. Detector aper ture  

6. Sync pulses 

7. Signal processing electronics 

8. Calibration devices 

9. Optimum performance t rade -off 

F o r  each of these a reas ,  several  solutions were  tr ied and final changes 

were  implemented only af ter  having assembled enough data  and experience to  

insure that the best  solution had been identified. 

The resu l t s  of the instrument 's  operation after all  final changes were 

incorporated have supplied the proof of the soundness of every  decision made 

during this  Phase  of work. 

A .  Measurement of Dual 3 Input Nand Gate Integrated Circui ts  

Initial operation of the F a s t  Scan Infrared Microscope was performed in 

April  1965, with the helium-cooled CuGe detector.  

the Dual 3 Input Nand Gate ICs were of a complete r a s t e r  scan and of a single 

The f i r s t  t r a c e s  taken of 

1 
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line scan  during t ransient  conditions. 

this  unit, where the chip measu res  ,050" x .050". 

of the various elements,  as energized for  IR scan, fo r  one circui t  are:  

F igure  1 shows schematic and layout of 

Typical power dissipation 

15 mw - u 
CR5 

P 

75 mw N - 
Q 2  

P 

8 mw u N 

pR1 

1 mw u P u 

CR3 

P z 
R3 

1 mw 

P for  CR1, CR2, CR4, RZ, Q l ,  R.4, Q3 is negligible. It is evident f r o m  

these f igures  that most  of the power is being dissipated by Q Z ,  which is the 

a r e a  of highest infrared radiation in a l l  of the experiments that a r e  covered in 

this  report .  

The scan r a s t e r  was made  of 50 l ines ,  spaced .0008" apart ,  and is shown 

in F igure  2. The infrared radiation emitted by each and every  one of the active 

elements of the circui t  is c lear ly  visible, and there  is a remarkable  correlat ion 

between corresponding profiles of the two circui ts  that a r e  supposedly identical. 

m1 P in a steaay-state condition. 

F igure  3 shows a transient condition of a single line of the circui t  des -  

The different t r a c e s  were taken at  7. 2 seconds t ime intervals cribed above. 

f r o m  each other and depict the warmup phase of the semiconductor device. We 

2 
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Figure  2. INFRARED PROFILES O F  A 50-LINE SCAN O F  IC 

4 



Figure 3. Trans ien t  Condition of a Single Line of IC 

Supe r impo s ed 

Reve r sed  
B 

A 

Figure 4. Alignment Tes t s  
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can  see  that heat  build-up takes several  seconds to  reach the point of thermal  

equilibrium. This  ver i f ies  the soundness of the decision to  l imit  the scanning 

speed to approximately 30 l ines per second. 

beginning and at the end of each line, the scanning of a line takes place in 

approximately 10 milliseconds. 

t he rma l  buildup in every  region of the target ,  and the higher amount of signal 

received by the detector allows an increase in the thermal  resolution of the 

instrument  . 

Counting the blank t ime at the 

At this speed, we have ample t ime to  observe 

During this work, the key to the occasional "slant" of the scope t r aces  

was found: imperfect axial centering of the target  and untimely sync triggering 

of the scope were  responsible. 

detected and corrected:  

compared with the profile of the same line taken counter-clockwise. 

in the amplitude of corresponding points is apparent. 

been cor rec ted ,  and the clockwise and counter -clockwise t r aces  a r e  m i r r o r  

images of each other. 

Figure 4 shows how a "slant" of the t r a c e s  is 

in A ,  the profile of a scan line taken clockwise is 

A difference 

In B ,  this condition has  

F igure  5 shows the line scan t r aces  depicting the warmup charac te r i s t ics  

of line # 9  of the Dual 3 Input Nand Gate integrated circuit .  

t r a c e s  of Figure 5 show the thermal  distribution along this line, taken 1 second, 

6 seconds,  16 seconds, and 46 seconds, after initial energization. 

pera ture  scale ,  corrected f o r  emissivity, is approximately 20 C per  division, 

WhICh U l V P ~  Qf ?5 

The ambient temperature  is represented by the baseline. 

F igure  5 and Figure 3 shows the finer resolution obtained through seve ra l  

s tages  of testing. 

the resolution (or  definition) of the target was continually upgraded, 

The oscilloscope 

The t e m -  
0 

0 c ab,,c a M - L L  

A comparison of 

By correct ion of the "slant" problem and improved alignment, 

A number of scans were  carr ied out, with the intention of establishing a 

"standard" profile for  cer ta in  l ines of the IC. It was found that thermal  profiles 

6 
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Figure  5. Trans ien t  Thermal  Distribution Along Single Line of IC 

F WELL-BONDED CHIP X-RAY OF POOR 

9 

INFRA RED AND X-RAY CHECK ON CHIP-TO-HEADER BOND OUACITY 

Figure  6. Evaluation of Semiconductor Chip Bonding 
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a r e  consistent for  "good" units identically energized, and that differences in the 

"elapsed t ime" parameter  and differences in the "power dissipation" parameter  

produce marked changes. It was also found that "time" and "power" a r e  some-  

what interchangeable, in the sense that s imi la r  thermal  buildup curves  can  be 

obtained ei ther  by holding the power dissipation level constant and taking the 

readings at longer t ime intervals ,  o r  by increasing the power dissipation level 

and reducing the length of t ime between readings. 

these findings, it may be possible t o  slow down t ime by simply reducing the 

amount of power dissipation of the units under evaluation, at least  within the 

limits imposed by the heat la te ra l  t ransfer  character is t ics .  

If fur ther  study should confirm 

Chip Bonding to Header is normally done with a special  cement applied 

with ex t reme c a r e ,  in order  to insure thorough adhesion. 

such as voids o r  c r acks ,  a r e  a serious threat  to  semiconductor reliability, since 

their  presence increases  the thermal  res is tance and c rea t e s  a l a rge r  thermal  

gradient between the chip and the heat sink. 

such as x - rays ,  visual inspection, and the rma l  res is tance measurements ,  a r e  

not likely to  detect these defects with 100% certitude. 

to  hold bet ter  promise.  

single line scan appear distorted by heat buildup generated by poor bonding. 

the i l lustration on the left,  the "standard" warmup t r a c e s  a r e  shown, along with 

an x - r a y  of the semiconductor chip, showing a thin, even bonding to the heat 

sink. 

side of the chip which, f r o m  the accompanying x- ray ,  appears  cemented only 

through the lower edge and the left-hand corner .  

scanning can  point out the very  a r e a  where a bond defect is located. 

work on this subject is needed, to  determine the resolution l imits  of this 

technique. 

Bond discontinuities, 

However, conventional tes t  methods 

Infrared scanning seems 

Figure  6 shows how the "standard" scan t r a c e s  of a 

In 

On the right,  the warmup t r aces  show a large gradient toward the right 

Thus,  it  seems that infrared 

Fur the r  

Study of Targe t  Coverage 

Dual 3 Input Nand Gate integrated c i rcu i t s  were scanned in various 

8 



Figure 7A. Figure 7B. Figure 7C. 
Line Scan W i t h  Line Scan W i t h  

1 /2  inch M i r r o r  1 inch M i r r o r  1/2 inch Mirror 
Diagonal Scan With 

Figure 8. Power Dissipation T r a c e s  of 4 ICs  
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direct ions,  in o rde r  t o  find the maximum a r e a  coverage of the microscope 's  

optical sys tem,  as it was before the introduction of the l a s t  changes. Exact 

knowledge of the target  a r e a  covered, with no distortion o r  loss  of power, was 

needed for  the selection of the optimum width of the m i r r o r s  in the polygon and 

the correlated height of the he l ices '  pitch. 

t r ace  of scan line #8 ,  taken with a polygon m i r r o r  1/2" wide. 

the same t r ace  taken with a m i r r o r  1'' wide. F igure  7C shows the t r ace  of a 

scan taken diagonally ac ross  the semiconductor chip, which measu res  0.072" 

f r o m  co rne r  to corner .  

t a rge t  a s  large a s  0.072" x 0.072", at least ,  without appreciable aberrations.  

F igu res  7A and 7B s e e m  to  prove that an increase in the polygon m i r r o r ' s  s ize  

does not add any significant improvement. 

Figure 7A shows the oscilloscope 

Figure  7B shows 

Figure  7C proves that the microscope can  cover  a 

Power Dissipation Variations 

Four  Dual 3 Input Nand Gate integrated circui ts  were r a s t e r  scanned, with 

every  fifth line being recorded on Polaroid film to minimize the amount of photo- 

graphs. A n  analysis of the t r aces  in Figure 8 shows the following resul ts :  

1) 8A and 8 B  have the same profile 

2) 8C has the same basic shape a s  8A and 8B, but is 

slightly higher in amplitude 

8D has  the same basic shape a s  8 A  and 8B, but is 3) 

lower in amplitude. 

F r o m  the power dissipation and the performance of the chip, the amplitude of 

the infrared profile co r re l a t e s  with the expected levels. There were  no changes 

in the IR radiation level  f r o m  one side of the chip to the other ,  even though the 

anomalies affected one side. 

depicting the temperature  profile of the chip, with difference in emissivi ty  

accounting f o r  the shape of the curve superimposed on the basic radiation level. 

This  seems to  indicate that the microscope is 

10 



Circui t  
Number 

Volts 
One Circuit  

3.0 

3.0 

6.0 

3.0 

8A 

8B 

8C 

8D 

Total E lec t r ic  a1 
Current  W a t t s  Character is t ic  s 

63 ma 189 mw Good 

Good 63 ma 189 mw 

63 m a  283.5 mw Output shorted 

35 ma 94.5 mw Output open 

Figure  9 shows the power dissipation of one circui t  of each chip. The 

other  c i rcu i t  was operated normally at  3.0 volts. In this  particular instance, 

open o r  shorted output conditions can also be detected by conventional tes t  

methods, but in la rge  scale integration this is impossible for those c i rcu i t s  

that don’t have outside connections. 

a s  the natural  tool fo r  power dissipation measurement.  

In this ca se ,  infrared scanning appears  

A Dual 3 Input Nand Gate integrated c i rcu i t ,  meeting al l  e lec t r ica l  speci-  

fications and matching the standard profile, was scanned for  a l l  50 lines. The 

pictures  taken of the 50-line scans in F igure  10 were enlarged 1OX and used as 

pat terns  to make a three -dimensional model of the radiation of this IC, shown 

in F igure  11. 

It is evident f r o m  a l l  the data and i l lustrations that the infrared profiles of 

a vood Dual 3 Tnput N a m i G a t e  IC. P-Z the  “ A m e i -  

integrated circui ts  should also have an infrared profile that can be identified 

respectively with each type. 

unique infrared profile, which is typical of that  condition. 

Similarly, every  failure condition has  i t s  own 

11 



-3VDC 

1ooa 

IOOQ 
EXTERNAL 

LOAD 

-3VDC 

- VCC =+6VDC 

Figure  9. POWER DISSIPATION O F  ONE CIRCUIT 
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Figure 10. 50-Line-Scan Standard Profi le  for IC 13 



Figure  11. 3-D Model of Inf ra red  Radiation 

14 



B. Analysis of Second Breakdown 

The f i r s t  attempts at  testing power t r ans i s to r s  for  second breakdown, 

using infrared techniques, were made in May 1966. 

supplied Type 2N1722 power t rans is tors  (Figure 12). 

The effort was on NASA- 

Since the physical s ize  of these units is many t imes  l a rge r  than the a r e a  

covered by the field of view of the microscope, the target  was moved in the 

foca l  plane in order  to  allow scanning of the whole surface one section at a t ime. 

During this operation, a condition of secondary breakdown was noticed. 

a r e a  contained within the A-B-C-D square shown in Figure 13, a t ransient  high- 

radiation peak occurred at every  pulse, when the unit was energized in a back- 

bias configuration by a Tektronix 565 Curve T r a c e r  operating in the oscil lator 

sweep mode. 

In the 

F igure  14 shows in B the scope t r a c e s  of two scan l ines taken exactly at 

the same location, depicting the infrared profile when the point where the 

secondary breakdown takes place is in,  o r  is out of, avalanche mode. Due to 

the frequency at which the energizing pulses occur (1 20 cps) , thermal  runaway 

is avoided and the t rans is tor  is electrically functional. 

covered by Mr. Michael Nowakowski of NASA Huntsville while personally 

operating the microscope, could never 

of detecting equipment capable of operating at adequate speed. 

in A the scope t r ace  of the secondary breakdown condition, a s  generated by the 

This  condition, d i s  - 

previously be observed because of lack 

Figure 14 shows 

m - onix 3 ( 3  L urve  racer. 

It s eems  superfluous to point out the importance of this discovery. 

capability of identifying a secondary breakdown point, without seeing the semi -  

conductor flashing to destruction in  a f ract ion of a second, will permi t  the study 

of the condition that causes  a secondary breakdown to occur. 

ledge, the removal of the cause will be possible, thus eliminating the possibility 

of a whole c l a s s  of semiconductor failures.  

The 

F r o m  this know- 

Among the severa l  causes  for  

15 



Figure 12. Power Transistor Type 2N1722 

'E 

I I 

I I 
NOTE : THE AREA BETWEEN ABCD IS I MM*. 

T H E  SECONDARY BREAKDOWN OCCURS 
ALONG THE X Y  LINE A S  INDICATED, 
WHEN THE TRANSISTOR IS ENERGIZED 
WITH TRACER 
S W E E  BIASED I 

Figure 13.  Area of Secondary Breakdown 
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A 

TEKTRONIX 575 OSCILLOSCOPE TRACES OF 2N1722 
BACK BIASED IN AVALANCHE MODE 

X 

I 
LOWER TRACE: NORMAL OPERATION 
UPPER TRACE: SECONDARY BREAKDOWN CONDITION 

Figure  14. Trans i s to r  2N1722 T r a c e s  of Secondary Breakdown 
17 



secondary breakdown, the following have been hypothesized: 

doping, impuri t ies ,  lattice deformation, physical spikes of the deposited mate - 

r i a l ,  c rys t a l  s t r e s s e s ,  etc. 

excessive localized 

A matr ix  was made up as  an overlay (Figure 15), in order  to facilitate 

a r e a  identification on the t ransis tor .  

surface was divided into five vertical  rows f r o m  A to  E ,  each of them 1 -mm 

wide. The scanning took place at thermal  equilibrium, moving the x-scan line 

along each row f r o m  top to  bottom, and observing the oscilloscope t race .  

Polaroid pictures of these t r a c e s  were taken at  pre-programmed points, a s  

shown in F igure  16 ,  where the le t te rs  identify the rows,  and the numbers  

indicate the distance in thousandths f r o m  the bottom of the chip. 

exhibited thermal  anomaly in the a rea  where the avalanche process  is located. 

Due to  the large s ize  of the chip, the 

This unit 

This  thermal  anomaly, detectable before the secondary breakdown (SB) 

takes  place,  became m o r e  and more conspicuous every t ime the unit was 

operated in the second breakdown condition. 

the negative resis tance point was progressively damaging the a rea  around it. 

F igure  17 shows in pictures D-125, D-140, and D-150,  the t r a c e s  of this a r e a  

before the SB condition is reached. Figure 18 shows the oscilloscope t r a c e s  of 

this same a r e a  taken before,  and during, the SB process .  

these two modes were respectively 50V and 55V. 

scanned after it had been rotated 90 , a s  shown by the pictures  0-D,  10-D, 20-D, 

30-D, and 40-D.  Since the hPSinnin5 nf th- e ~ p e - z k e r - t ~ ,  the-bxmsisto;- *a= 

operated approximately 15 t imes  in the SB mode, for an average of 30 minutes 

each time. Finally,  during a routine e lec t r ica l  check, the unit failed, because 

the deterioration of the SB a r e a  had reached such large proportions. 

Evidently, the heat developed at 

The VCE readings in 

This  same a r e a  was also 
0 

. .  

Figure  19 shows the oscilloscope t r a c e s  of 14 selected line scans of 

another t rans is tor  investigated fo r  SB. F o r  each of these l ines ,  rows 1 and 3 

were  taken with the t rans is tor  energized in the back-bias configuration, using 

18 



I EMITTER i / I  I /  1 BASELEAD 1 
LEAD 

NOTE. LOBSERVE INVERTED IMAGE INEYEPIECE 
2 .  SCALE: 1.25'-0.040' 
3 . X - A X I S s  UNITS INTHOUSANDTHS 

Figure  15. Method of Scanning 

Figure 16. Scan Traces  of Type 2N1722 Trans i s to r  
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50V VCE B 

+-U-140-- - - - - . )  

C E  
lreakdown 55V V 

- 

Before Avalanche During Avalanche 

Figure 17. Scan T r a c e s  of Type 2N1722 Trans i s to r  with SB 

-30-D-- - - - - r )  

4 U - D 4  

C E  50V VcE Rotated 90"  Breakdown 55V V 

Figure  18. Scan T r a c e s  of SB Area  of 2N1722 Trans i s to r  

20 



Power Trans is tor  2N1722 

Before 
B r  e akdo wn 

D160 D130 DlOO D80 D 50 D2O Column D 180 
and Line I 

J 

During 
Breakdown 

Before 
Breakdown 

B160 B130 BlOO B80 B 50 B 20 
and Line 

During 
Breakdown 

Figure 19. Inf ra red  scan  l ines,  before and during second breakdown 
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the Tektronix 575 Curve T r a c e r  operating in the oscil lator sweep mode, at a 

power level  just below the breakdown point. The lower t r a c e s  (rows 2 and 4) 

were  taken on the same l ines ,  at a power level  just above the breakdown limit. 

The breakdown condition shown in F igure  19 is quite interesting. Contrary 

to  the usual  configuration where only one point of breakdown is present ,  this unit 

is exhibiting seve ra l  breakdown points, al l  located in the a r e a  of column D. 

Also of grea t  interest  is the capability of forecasting the general  a r e a  where the 

breakdown is going to occur. 

at  lower -than-breakdown power levels. 

This is accomplished by examining the scan t r a c e s  

These t r aces  a r e  line scans of 10-millisecond duration, taken at  1-second 

intervals ,  and a r e  depicting a fast semiconductor warmup, which would rapidly 

cause thermal  runaway i f  allowed to continue. 

scan  t r a c e s  neatly stacked above each other ,  breakdown is not going to occur. 

Where the thermal  buildup curves  are  of different 

down will take place, a s  evidenced by the curves  in rows 2 and 4. 

Where the thermal  buildup shows 

s izes  and shapes,  break-  . 

Careful  analysis of the t ransis tor  in the breakdown a r e a  will probably 

disclose the cause;  but even without this knowledge, infrared scanning can  detect 

units prone to SB before the actual breakdown process  takes  place. 

Another group of Type 2Nl722 tested f o r  SB had the following electr ical  

c h a r  ac  te  r i s tic s: 

T r an s i s to r  

# 26 

# 28 

# 29 

# 30 

#31 



The first four units were tested during SB, and at  a level below SB, to locate 

the point of breakdown. The following is a summary  of the tes t  data taken on 

the five t rans is tors .  F igures  20 through 24 a r e  the oscilloscope t r a c e s  of the 

14 scan  l ines that a r e  of interest ,  because they show variations related to the 

SB condition. 

t o r s  energized in the back-bias condition, using a Tektronix 575 Curve T r a c e r  

operating in the oscil lator sweep mode at the power designated in each figure.  

F o r  each of the l ines B and D,  scans were  taken with the t r a n s i s -  

F igure  20, Trans is tor  #26. Breakdown occurred at approximately . 2  amps 

There was a sma l l  hot spot on line D-50, but no and was evident on line D-60. 

breakdown occurred at  that  point. 

indication of impending breakdown w a s  noticed. 

Tes ts  were  also run at  . l  amperes ,  but no 

F igure  21, T rans i s to r  #28. Breakdown occurred at  approximately .7 amps 

and was  evident on l ines B-100 and B-160. 

to B-160, but in some a r e a s  was not observable because hidden under the base 

land located between B-122 and B-138. 

and at .4 amps showed hot spots at  the same points. 

The breakdown occurred f r o m  B-100 

T e s t s  run  below breakdown a t  .600 amps 

Figure  22, Trans is tor  #29. Breakdown occurred at  approximately . 9  amps 

and was evident on l ines D-50,  D-80, and D-100. Tes t s  run  below breakdown 

at .6 amps showed hot spots at D-50, D-80, and D-100. Tes t s  run at  .4 amps 

showed a detectable hot spot at D-50. 

F igure  23, Trans is tor  #30. Allegedly a good unit, it  was run at  . 6  amperes  

Curren t  was increased to and some thermal  i r regular i ty  showed at  line D-180. 

.9  amperes  and after scanning l ines D-20,  D-50, D-80 ,  and D-100, the t r a n s i s -  

t o r  went into SB at approximately . 15 amps. 

chip at  

showed E-180 to  be the point of secondary breakdown. 

the outer edge of the chip. 

Scanning the remainder  of the 

15 amp found D-180 to  show a detectable hot spot. Fu r the r  scanning 

This point (E-180) is on 

23 
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Figure  24, Trans is tor  # 3 1 .  This chip was scanned at .6 and .9 amperes ,  

This t r ans i s to r  a l so  tested OK on conventional but no anomalies were  found. 

testing. 

In scanning the above t rans is tors ,  it was found that when the emi t te r  was 

viewed, the t r a c e s  showed 2 waveforms that alternated during warmup (see  

F igu re  25d). 

t ronix Curve T r a c e r  a r e  occurring at  a ra te  of 120 cps ,  while the scan t r a c e s  

a r e  taken a t  1-second intervals,  for a duration of 10 milliseconds each. 

It should be kept in mind that the pulses coming f r o m  the Tek-  

Every  other t r ace  is photographed in F igures  25a and 25b, whereas  25d 

and 25e a r e  every  t race .  Figure 25c shows lines 1 ,  2, 5 ,  6, 9, and 10--the 

alternating phenomenon spread out by eliminating some of the intermediate 

t r a c e s  3 ,  4, 7,  and 8. The scanning speed was then slowed down, and similar 

pictures  were taken. 

shows every scan. 

of the t rans is tor  by the Curve Trace r  to  the scan speed of the polygon. 

speed at  which these curves  a re  varying is indicative of the speed of the SB 

process  and should allow a better understanding of this phenomenon. 

F igures  25a' and 25b' show every other scan,  and 25c' 

This symmetry could be a phasing relationship of the pulsing 

The 
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B 100 B 80 

Figure 21. SB SCAN LINES OF 2N1722 TRANSISTOR #28 
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B 80 B 100 B 1 3 0  B 160 B 180 B 20 B 50 

0 . 4  a m p s  
before  

breakdown 

0.6 a m p s  
before  

breakdown 

0. 9 a m p s  
during 

breakdown 

D 20 D 50 D 80 D 100 D 130 D 160 D 180 

Collector  C h a r a c t e r i s t i c s  
0 . 4  a m p s  

before  breakdown 

Collector C h a r a c t e r i s t i c s  
0 . 6  a m p s  

before  breakdown 

Collector  C h a r a c t e r i s t i c s  
0. 9 a m p s  

before  breakdown 

F igu re  22. SB Scan Lines  of 2N1722 T r a n s i s t o r  #29 
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0 . 6  a m p s  
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before 

breakdown 

D 20 D 50 D 80 D 100 D 130 D 160 D 180 

E 180 
Breakdown 
@ 150ma 

D 180 
Breakdown 
@ 150ma 

Collector Charac t e r i s t i c s  
during Breakdown 

@ 150ma 

F igure  23. SB Scan Lines of 2N1722 Trans i s to r  #30 
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0.9 amps 
before 

breakdown 

0.6 amps 
before  

breakdown 

0.9 amps 
before 

breakdown 

B 20 B 50 B 80 B 100 B 130 B 160 B 180 

D 20 D 50 D 80 D 100 D 130 D 160 D 180 

Collective Charac t e r i s t i c s  Collective Charac t e r i s t i c s  
0.6 amps  0.9 a m p s  

Before Breakdown Before Breakdown 

F igure  24. SB Scan Lines  of 2N1722 Trans i s to r  #31 
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C. Trans i s to r  Quality Evaluation 

The microscope was used in the measurement  of chip temperature  in a 

vendor evaluation program of Type 2N930 t rans is tors .  These t r ans i s to r s ,  

divided into seven lots of 50 each, made by seven different manufacturers ,  

were  individually energized at 1 /4, 1 /2, and full power. 

these levels ,  the case  temperature  was read 

equilibrium was reached. 

applying a thin coat of Sylgard - 182. 

Type 2N930 t r ans i s to r s  were  evaluated are:  Amelco, Fairchi ld ,  Motorola, 

Raytheon, Transi t ron,  Texas Instruments,  and Union Carbide. The resu l t s  of 

this work a r e  shown in F igu res  26 through 32. 

A t  every  one of 

by infrared means after thermal  

Emissivity equalization of the case  was achieved by 

The seven different manufacturers whose 

F igure  33 shows the electr ical  power setup used for  this study. 

was taken to avoid differences in power dissipation f r o m  unit to  unit. 

ca se  temperature  measurements  were completed, the l i d  of a limited number 

of units fo r  each lot was cut away, exposing the chip to d i rec t  viewing. 

units had been selected out of each one of the following groups: high c a s e  t em-  

pera ture ,  average case  temperature ,  and low c a s e  tempera ture ,  for  every  

manufacturer.  The t rans is tor  chips, s o  exposed, were  energized a t  full power 

and scanned with the microscope,  and their  maximum surface temperature  was 

Care  

Once the 

These 

recorded. Figure 34 shows the resul ts  of these measurements .  

It was found that the correlation between chip temperature  and case  tem- 

pera ture  was gand for some manufac t1 ir~rc  ~ d - p r a w A k ~ h c r s ,  z z  e v k k r n x - ’  

by the char t s  shown in F igu res  35 through 41, detailed in the following: 

F igure  35, Fairchild:  

tu re .  

s i s t o r s  to  have longer emi t te r  leads in contrast  to the low temperature  t r an -  

s i s t o r s ,  which tend to  have shor t  emitter leads.  

shows good l inear  correlat ion of chip to  case  tempera-  

Visual analysis shows the higher level chip and case  temperature  t r a n -  

(Emit ter  lead r e f e r s  to  lead 

f r o m  post to chip.) 
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Figure  36,  Amelco: 

t e m p e r a t u r e ,  but the grouping is fairly tight. 

shows very  little cor re la t ion  of chip tempera ture  and case  

Visual analysis shows no indi- 

cat ion of tempera ture  levels correlat ing to  chip positioning. 

F igu re  37 ,  Motorola: shows some cor re la t ion  of chip tempera ture  ve r sus  c a s e  

tempera ture .  

tion show two levels: 

that all the high tempera ture  level t r ans i s to r s  have a chip design of a cer ta in  

type,  while all the units of the "low" group a r e  of a different design. 

Both chip temperature  and case  tempera ture  frequency dis t r ibu-  

Visual analysis shows one high and one low, o r  average. 

F igu re  38, Union Carbide: 

c a s e  temperature .  Visual analysis showed no apparent difference between 

t rans is tor  s exhibiting d iff e rent te mpe r atur e leve 1s. 

shows some cor re la t ion  of chip temperature  ve r sus  

F igu re  39 ,  Transi t ron:  

c a s e  temperature .  

shows some cor re la t ion  of chip temperature  versus  

Visual analysis showed no apparent difference between 

t r ans  is t o r s  . 
Figure  40, Raytheon: 

ture  v e r s u s  c a s e  tempera ture .  Visual analysis shows that the higher t empera -  

shows a fairly good l inear  cor re la t ion  of chip t empera -  

ture  t r ans i s to r s  have the chip further f r o m  the emi t te r  post, whereas  the lower 

tempera ture  t r ans i s to r s  a re  c loser  to it. 

heade r ,  in cont ras t  with the other  manufac turers '  technique of keeping the chip 

location ve ry  constant. 

The chips a r e  placed all  over the 

re 

v e r s u s  case  temperature .  

t empera ture .  

Visual analysis shows no cor re la t ion  of position to  

Two conclusions can be drawn f r o m  this study: (1) there  is a limited 

cor re la t ion  between chip temperature  and c a s e  tempera ture ,  and (2) the spread 

of the infrared readings can  give a fa i r ly  good idea of how tight the p rocess  

control  is for  eve ry  manufacturer ,  

32 



D. Tempera ture  Versus  Output Calibration Curves 

Temperature  calibration was done with the use  of specially-designed 

blackbody cavities,  whose radiation level  was varied by controlling the power 

dissipated by a built-in hea ter ,  while the temperature  was monitored by 

p rec i s  ion thermocouple. 

Char t s ,  correlat ing blackbody tempera ture  with the magnitude of the 

infrared detector output, were  plotted for  various thermal  ranges.  

shows one cha r t  of this  type. 

c lose to 2 C ,  a t  temperature  levels between ambient and 100 C. 

Figure 4 2  

It can be seen that thermal  resolution appears 
0 0 

Before introducing the l a s t  changes in the microscope, temperature  - 
versus-radiation curves  (in volts out) were  generated for  an evaluation of the 

sensit ivity of the CuGe detector,  cooled with liquid helium, to  that of the 

HgGe detector ,  cooled by the cryogenic generator.  

responses .  

Figure 43 shows the two 

It is evident f r o m  these curves in F igure  43, that the HgGe detector,  

cooled by the cryogenic generator ,  is not a s  sensitive as the CuGe detector,  

cooled with liquid helium. 

evaluate the cryogenic generator pr ior  to disassembly, so  that any problems 

with the generator could be corrected in paral le l  with the re -assembly  effort. 

The pr imary  reason for  running these t e s t s  was to  

3 3  



E. Low Power Trans i s to r s  Type 2N3781 (1-Watt Without Heat Sink) 

The low power t rans is tor  Type 2N3781 was scanned because it has  a fine 

s t ruc tura l  pat tern of known physical dimension (Figure 44). 

during an investigation to  evaluate the diameter  of the a r e a  being viewed, and 

of the microscope 's  resolving capability. 

It was tested 
* 

The resu l t s  were  ra ther  consistent and indicated that the diameter  of the 

a r e a  viewed by the detector i s  approximately 0.005", with the capability of 

resolving elements t h ree -  to  four-t ime smaller .  

scope t r a c e s  of line scan #20 of the t rans is tor  of F igure  44. 

s t ruc ture  of this unit, the width of the "teeth" belonging to  the base and to the 

emi t te r  regions is approximately 35 microns.  The scope t r ace  shows that the 

sys tem can  resolve these a r e a s  f rom each other and f r o m  the junction a r e a  in 

between, by giving a separate  measurement of the infrared radiation emitted by 

each one of them. 

ponding to  three  different levels of power dissipation. 

F igure  45 shows the oscil lo- 

In the comb 

The three  t r aces  shown in the Polaroid picture a r e  c o r r e s -  

On the bas i s  of these resul ts ,  a consultation was held with Dr.  Walther 

of Diffraction Limited,  Inc., in order  t o  devise ways and means to  achieve 

finer resolution. 

the change most  likely capable of producing this result .  

implemented in the final modification of the microscope. 

The insertion of a "cold stoptt  diaphragm was indicated as 

This  change has  been 

Emissivi ty  correct ion factor was derived by applying a thin layer  of an 

iner t  coating having blackbody emissivity (Sylgard- 182) over the semiconductor 

surface,  and measuring the increase in radiation level  so derived. Figure 46 

shows in the lower t race  the energy level of the infrared radiation emitted by 

the naked semiconductor surface,  and in the upper t r ace ,  the increased level 

due to the applied coating. It is apparent that the emissivity index of the un- 

coated surface is approximately 0.5. Fur the r  study on this subject is continuing. 
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Measurement programs on medium power t r ans i s to r s  (Type 2N3781) 

and integrated c i rcu i t s  were  car r ied  on, with the intent of refining our 

operating techniques and of finding the scanning procedure capable of yielding 

the most  signif ic ant information. 

CONCLUSION 

The extensive calibration and measurement  work car r ied  out during 

Phase  IV has  made it possible to achieve the following goals: 

1) develop sophisticated techniques for the alignment of the 

optics of the microscope; 

2) confirm that the best pract ical  trade-off between speed, spot- 

s ize  'and thermal  resolution is in the vicinity of 30 l ines per  

second, 30 microns and 2 C;  

develop convenient aiming and focusing techniques; 

0 

3) 

4) perfect scanning techniques; 

5) 

6) 

allow good understanding of the readings; 

prove that future fa i lures  can be forecasted by infrared 

scanning. 



CASE TEMPERATURE DATA 

AMELCO 2N930 NPN 

No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

LO 
11 
1 2  
13 
14 
15 
16 
17 
18 
19 
10 
21 
22 
23 
24 
25.- 

- 

- 

1 ZPower  

38. 0 
35. 0 
35. 8 
37.0 
37 .4  
36. 0 
35. 0 
37.0 
38. 4 
37.0 
36. 0 
37.0 
39. 4 
37.0 
37.0 
32. 4 
33. 4 
33. 5 
33. 4 
34. 8 
32. 4 
29. 5 
36.0 
33. 5 

zr;R 

1 ZPower 

45. 6 
42. 3 
42. 0 
41. 5 
48 .0  
47. 6 
44. 0 
49 .0  
49. 4 
49.0 
45. 5 
47. 5 
50. 0 
47.4 
46. 5 
43. 5 
47 .4  
45. 6 
47. 5 
43 .4  
42. 5 
45. 5 
47 .4  
44. 0 

Fu l l  P o w e r  

67.0 
67. 5 
62. 0 
67. 0 
71. 0 
69. 5 
64. 5 
77 .0  
72. 0 
73.0 
68. 0 
66. 5 
76.0 
74 .4  
70. 7 
69. 4 
73. 3 
69. 4 
74. 4 
72. 0 
63. 5 
72. 0 
69. 5 
65. 5 - 

Notes:  
40. 26 
showed 
3 s h o r t  

1 go. TiPower 

26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45  
46 
47 
48 
49 
9- 

- 

35.0 
35.8 
38. 2 
37.0 
37.0 
36.0 
38. 2 
37.0 
33 .4  
34. 8 
34. 8 
33 .4  
36. 0 
36. 0 
35.0 
33 .4  
33. 5 
35. 0 
35. 0 
35.0 
36.0 
36.0 
35.0 

n 

1 ZPower 

46. 3 
45. 6 
49. 5 
49 .0  
50.0 
47 .4  
51. 8 
49 .0  
44. 4 
45. 6 
47 .4  
46. 5 
50. 0 
51. 0 
45. 6 
43. 4 
46. 5 
50. 0 
54. 3 
47 .4  
49 .0  
47.4 
51. 0 
F 3  @ 

Full P o w e r  

67 .0  
68. 0 
70, 6 
73 .0  
75. 6 
72. 0 
77 .0  
74. 4 
74 .4  
74. 4 
70. 6 
73. 1 
75.0 
73. a 
70. 6 
69. 4 
72. 0 
72. 0 
75. 0 
74. 4 
74 .4  
77. 0 
74.0 
71 n 

F i g u r e  26. 
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I 

No. - 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
1 2  
1 3  
14 
1 5  
16 
17 
18 
1 9  
20 
21 
22 
23 
24  
25- 

- 

I g P o w e r  

32. 0 
32. 0 
33. 5 
37. 0 
34.0 
33 .4  
38. 0 
33. 4 
34. 0 
34. 7 
33.0 
33 .4  
34. 5 
32.0 
32. 5 
33.0 
32. 0 
33. 4 
33.0 
33 .4  

33. 4 
34. 5 
34. 5 
2 7  c 
JL. 4 

1 ZPower  

38. 0 
41. 0 
43. 5 
59. 0 
42. 3 
45. 5 
59.0 
39.0 
40. 0 
50. 0 
41. 4 
43 .4  
39. 5 
39.0 
42. 3 
41. 4 
37. 5 
42. 3 
38. 0 
43.0 

43.0 
38. 0 
38. 0 
17 n 
> I .  u 

CASE TEMPERATURE DATA 
MOTOROLA 2N930 N P N  

Fu l l  P o w e r  

68. 0 
66. 5 
69. 0 
94.0 
73 .4  
69. 0 
91. 0 
69. 2 
69. 2 
68. 6 
74. 4 
72. 0 
69. 2 
66. 5 
69. 2 
68. 0 
68.6 
74 .4  
69. 2 
70. 0 

69. 2 
66. 5 
69.0 
/ I  I- uu. 2 

Note: 
No. 
21 

;horte 

No. 

26 
27 
2 8  
29 
30 
31 
32 
33 
34 
35  
36 
37 
38 
39 
40 
41 
42 
43  
44 
4 5  
46 
47 
48  
49 
50- 

- 
1 ZPower  

34. 5 
32. 0 
34. 5 
33 .4  
31. 5 
34. 5 
33 .4  
33. 4 
35. 7 
33. 8 
32. 0 
32. 0 
33.4 
33 .4  
34.0 
33. 6 
32. 5 
32. 5 
33.4 
32. 0 
32. 5 
34. 0 
32. 5 
33 .4  - -  . 
55.4 

1 ZPower  

43. 5 
40. 5 
52. 0 
43. 5 
45. 5 
45. 5 
45 .0  
42. 0 
50. 5 
50.0 
42. 3 
39.0 
38. 0 
41. 4 
39.0 
37. 5 
41. 5 
43. 5 
39. 0 
41. 0 
39.0 
39. 0 
39. 5 
41. 4 
4 / .  5 

Full P o w e r  

70. 5 
69. 2 
72. 0 
69. 2 
80. 5 
73. 4 
69 .0  
72. 0 
84. 5 
88. 5 
66. 5 
69. 2 
66. 5 
70. 0 
74. 5 
66. 5 
70. 5 
71. 5 
68. 0 
67. 2 
66. 5 
67. 2 
66. 5 
68. 0 
79. 5 

Figure 27. 
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C A S E  T E M P E R A T U R E  D A T A  - 

No. - 
1 
3 
5 
6 
7 
8 
9 

10 
1 1  
13  
14 
15  
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

1 %Power 

85. 8 
34. 5 
36. 4 
36. 4 
36. 4 
37 .4  
34. 5 
33. 5 
34. 5 
34. 5 
34. 5 
35. 5 
35. 3 
34.0 
34. 5 
36. 5 
37. 8 
36. 8 
36. 0 
36. 8 
35. 8 
38. 0 

1 ZPower 

96. 5 
46. 5 
50. 9 
44. 0 
45. 7 
49. 2 
44. 0 
44 .0  
51. 0 
45. 6 
51.0 
52. 5 
51. 8 
50. 0 
51.0 
50. 0 
51. 0 
51. 0 
47 .0  
51. 0 
49. 0 
51. 0 

FAIRCHILD 2N930 N P N  

Ful l  Power No. 

98. 2 
72. 3 
78. 8 
74 .4  
74.4 
71. 2 
71. 1 
74 .4  
70. 0 
73 .2  
71. 0 
74 .4  
72. 2 
72. 2 
76. 5 
74 .4  
74. 2 
70. 8 
70.8 
71. 8 
69. 5 
72. 0 

Note: 
No. 2, 
4, + Lb 

showed 
shor t  

26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43  
4 4  
45  
46 

1 
ZPower Full Power 

34. 5 
36. 4 
36 .4  
35. 8 
35 .7  
34. 8 
33. 6 
35. 8 
36. 0 
33 .4  
34. 8 
34. 8 
34. 8 
36. 0 
34. 4 
39. 2 
38. 3 
34. 8 
38.0 
37. 0 

45.0 
51. 0 
51. 7 
49. 2 
51. 7 
51. 7 
46. 4 
48. 3 
50. 0 
49. 0 
51. 0 
49 .0  
51. 0 
45. 4 
51. 0 
51. 0 
49 .0  
43. 5 
49. 0 
4 9 . 0  

63. 8 
70. 0 
71. 8 
68. 2 
73 .0  
71. 8 
64. 3 
72. 0 
74. 4 
72. 0 
78. 0 
73 .0  
74. 4 
69. 0 
75. 5 
79 .0  
76. 2 
66. 4 
78. 0 
75. 5 

F igu re  28. 
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C A S E  T E M P E R A T U R E  D A T A  

No. - 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22  
23 
24 
z ! r  
- 

1  power 

35. 8 
35. 8 
36. 4 
34. 5 
36. 4 
35. 8 
34. 5 
35. 2 
38. 2 
33. 0 
33. 5 
34. 2 
34. 0 
34. 2 
34. 5 
34. 5 
32. 4 
33. 5 
32. 4 
33. 5 
33. 5 
33.0 
34. 5 
34. 5 
34. u 

1 ZPower  

43. 4 
44. 5 
43. 4 
39.0 
4 3 . 4  
40. 6 
40 .6  
41. 0 
50. 0 
39 .0  
43 .0  
41. 0 
40. 2 
40. 2 
40. 2 
39 .4  
38. 5 
40. 2 
39.0 
40. 2 
41. 0 
39 .0  
39.0 
40. 2 
3 8 .  5 

R A Y T H E O N  2N930 NPN 

Fu l l  Power  

57.5 
63. 0 
63 .8  
63. 8 
78 .8  
56.0 
57.3 
57. 5 
83.0 
56.0 
57.5 
79. 5 
60.6 
58.8 
54.8 
74.0 
47 .4  
52. 8 
52. 0 
54. 5 
68 .0  
50. 0 
78.0 
58. 2 

- 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35  
36 
37 
38 
39 
40 
41 
42 
43  
44  
4 5  
46 
47 
48 
49  
50 
- 

1 1 

I 
35. 2 
34. 5 
32. 4 
33. 2 
32. 4 
33. 5 
34.0 
32. 4 
32. 4 
32. 4 
32. 4 
33. 5 
33.0 
33. 5 
33.5 
33. 5 
34. 5 
33. 5 
35. 8 
34. 2 
34. 5 
33. 5 
33.0 
32. 4 

40. 2 
41. 0 
41. 0 
45. 5 
38. 0 
39. 6 
43 .0  
39 .0  
39.0 
38. 0 
36. 5 
42. 3 
37.0 
40. 2 
41. 0 
40. 2 
40. 2 
40. 2 
44. 5 
40. 6 
42. 3 
40. 2 
41.0 
39.0 

54. 5 
77. 5 
69. 2 
85. 6 
66. 4 
57. 5 
79. 5 
59. 7 
62. 0 
63. 8 
49 .0  
67. 2 
65. 0 
66. 4 
79. 5 
74 .0  
75.0 
56. 0 
79. 5 
75 .0  
57.0 
66. 4 
80. 2 
56. 0 

F i g u r e  29. 

38 



1 
Jo. SPower - 

1 
2 
3 
4 
5 
6 
7 
8 
9 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
,O 
#1 
#2  
,3  
,4 
5 

- 

34. 5 
32. 0 
33. 5 
35.0 
33. 5 
32. 5 
33. 5 
32. 0 
33. 5 
35. 0 
34. 5 
36 .0  
36 .0  
36.0 
36 .0  
34. 5 
34. 5 
35 .0  
33. 5 
34. 5 
33. 5 
32. 5 
34 .0  
33. 5 
34.0 

1 - 
2 Power 

CASE TEMPERATURE DATA 

TEXAS INSTRUMENTS 2N930 NPN 

51. 0 
49. 0 
44. 5 
52. 0 
51. 0 
49 .0  
52. 0 
44 .5  
48. 0 
52. 0 
54. 5 
56. 5 
55. 5 
53. 5 
55.0 
50.0 
53. 5 
47. 5 
46. 5 
52. 0 
48. 0 
49.0 
46. 5 
47. 5 
51. 0 

Full Power 

73. 5 
71. 0 
73. 0 
81. 7 
84. 0 
77 .0  
77 .0  
73.0 
77. 0 
77. 0 
86. 0 
83. 0 
89. 0 
86. 0 
89. 0 
83. 0 
84. 7 
80. 0 
78. 5 
86. 0 
78. 0 
80. 0 
74. 0 
78. 0 
84. 5 

No. - 
26 
27 
28 
29 
30 
31 
32 
33 
3 4  
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 

1 - 
4 Power 

33. 5 
35. 5 
33. 5 
34. 5 
34. 5 
34. 5 
35. 0 
32. 5 
34.0 
35.0 
34. 0 
33. 5 
35. 5 
34. 0 
33. 5 
34. 5 
34. 5 
37.0 
33. 5 
36. 5 
34. 5 
34. 5 

1 
SPower Fu l l  Power 

4 9 . 0  
54. 5 
45. 5 
46. 5 
51. 0 
53 .  5 
46. 5 
45. 5 
51. 0 
53.0 
53. 5 
51. 0 
52.0 
53. 0 
52. 0 
54.0 
52. 0 
53. 5 
48. 5 
53. 0 
53. 0 
49. 5 

84. 5 
86.0 
66. 5 
73. 5 
75. 5 
76.0 
72. 0 
72. 0 
82. 0 
85. 5 
88. 0 
82. 0 
82. 0 
84. 5 
83. 0 
85. 0 
82. 0 
87. 0 
8 2 . 0  
87 .0  
89. 0 
79. 5 

All of the remaining t r ans i s to r s  l is ted above have standard 
length leads.  

1 I 

F igure 30. 



CASE TEMPERATURE DATA 

TRANSITRON 2N930 NPN 

40. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

'0 
'1 
'2 
!3 
'4 
'5 

- 

- 

1 1 zPower  ZPower Full  Powel 

33. 8 
34. 2 

34.0 
32. 4 
31.0 
34. 0 
32. 4 
34. 5 
34. 5 
34. 5 
32. 4 
39.0 
34. 5 
34. 5 
34. 8 
36.4 
34. 5 
35. 8 
32.0 
35. 8 
35. 2 
34. 8 
34. 5 
34. 5 

42. 3 
42. 5 

49.0 
40. 2 
38.0 
43. 4 
39.0 
41. 5 
42. 3 
43.4 
40. 2 
47.4 
44. 5 
43.4 
43.4 
43.4 
43. 4 
43. 4 
37.3 
42. 3 
43.0 
41. 8 
41. 0 
41. 0 

75. 8 
77.0 

77.0 
64. 0 
70. 0 
77.0 
57. 5 
65. 0 
70. 4 
68.0 
57.4 
81. 8 
81. 8 
78. 0 
78. 0 
69. 0 
69. 0 
64. 6 
65. 0 
77.0 
68. 0 
76. 8 
63. 8 
69. 2 

Note: 
No. 3 
ins table 

No. 

26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

- 

Figure 31. 

1 rPower  

34. 5 
36. 5 
34. 5 
35. 2 
34. 2 
33. 5 
35. 2 
34.0 
33. 5 
37.0 
35. 8 
32. 4 
32. 8 
32. 4 
32. 7 
36. 7 
34. 2 
35.8 
37.0 
36.0 
34. 8 
35. 8 
36.4 
35. 8 

1 ZPower 

39. 6 
45. 2 
41. 0 
42. 0 
41. 0 
38.0 
43. 4 
41.0 
40. 2 
43.0 
42. 3 
40. 2 
39. 6 
43.4 
42. 3 
43.4 
43. 0 
42. 3 
44. 5 
41. 6 
43. 4 
42. 3 
43. 4 
42. 5 

Full  Power 

63. 8 
80. 5 
73. 5 
74. 5 
69. 2 
74. 5 
77.0 
60. 5 
69. 2 
78. 0 
80. 5 
81. 8 
64. 8 
77.0 
66. 4 
68. 6 
72. 0 
73. 5 
74. 0 
72. 2 
74. 5 
63. 4 
73. 5 
62. 0 
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CASE TEMPERATURE DATA 

. 
No. - 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
. 3  
.4  
15 
16 
17 
18 
19 
!O 
!1 
!2 
!3 
!4 
!5 

- 

1 
S P o w e r  

1 
-Sower 

37.0 
32. 4 
32. 4 
32. 4 
33. 5 
32. 4 
33 .0  
32. 4 
31. 5 
32. 5 
31. 5 
32. 4 
32. 4 
32. 4 
32. 4 
33. 5 
33. 5 
33. 5 
32. 8 
32. 4 
33. 5 
32. 4 

45. 5 
40. 2 
41. 0 
41. 0 
42. 3 
40. 2 
40. 2 
40. 2 
40. 2 
39. 0 
39. 5 
38. 0 
38. 0 
40. 2 
40. 2 
38. 5 
40. 2 
40. 2 
39.0 
40. 6 
39; 5 
40.6 

UNION CARBIDE 2N930 N P N  

Full P o w e r  

74. 5 
70. 8 
71. 2 
70. 8 
75. 8 
69. 2 
74. 0 
69. 0 
72. 0 
70. 0 
70. 8 
69. 0 
69. 2 
68. 0 
76. 8 
68. 0 
70. 8 
68. 6 
71. 0 
79. 5 
70. 0 
79. 5 

N o t e  : 
\To. I ,  
!, t 3 
ihowed 
short 

YO a 

'6 
27 
!8 
'9 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
$0 
$1 
$2 
$3 
$4 
$5 
$6 
$7 
1.8 
$9 
50 

- 

- 

1 
S P o w e r  

32. 4 
33. 5 
33. 5 
32. 4 
33. 5 
32. 0 
32. 4 
33. 0 
33. 5 
33. 5 
33. 5 
33.0 
33. 8 
33. 5 
34. 2 
33. 5 
34. 5 
34. 2 
33.0 
34. 5 
34. 2 
34. 0 
33.0 
34. 5 
34. 5 

1 
ZPower  

39.0 
41.0 
38. 5 
39. 5 
41. 0 
42. 0 
41. 0 
39.0 
42. 3 
41. 0 
41. 0 
39.0 
40. 2 
41. 0 
41. 0 
40. 0 
41. 0 
40. 2 
41. 0 
41. 5 
40. 2 
42. 3 
39 .0  
42. 3 
39. 5 

Tu11 P o w e r  

73. 5 
73. 5 
69. 0 
77.0 
81. 8 
81. 8 
73. 5 
68 .0  
76. 8 
81. 8 
80. 5 
74. 5 
80. 5 
76 .4  
79. 5 
78. 0 
74. 5 
6 9 . 2  . 

77.0 
76. 8 
75. 8 
77. 0 
73. 5 
77. 0 
70. 8 

F igure  32.  
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2N930 

Con s t ant 
Cur ren t  

Power  Supply 

t 

F i g u r e  33. ELECTRICAL POWER SETUP FOR 2N930 TRANSISTOR STUDY 
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CHIP TEMPERATURE - FULL POWER 

AMELCO FAIRCHILD MOTOROLA RAYTHEON 

Trans .  No. Temp. ITrans.  NO. Temp. I Trans .  No. Temp. 

33 shor t  
13 shor t  
4 8  shor t  

8 12 1 
3 1  120 
45  12 1 

5 118 
9 122 

15 119 
20 12 1 
22 118 

3 119 
7 119 

2 1  119 

TRANSIT RON 

Trans .  No. Temp. 

13 117 
14 118 
27 112 

7 118 
10 113 
17 110 
18 112 
28 113 
26 97 
33 110 
4 9  105 

5 112 
37 114 
45 115 
16 108 
17 107 
25 107 
29 108 
3 4  109 
33 99 
30 103 
44 105 

6 open 
8 104 
9 104 

13 open 
15 108 
22 104 
24  104 
27 113 
29 115 
4 118 
7 117 

30  118 
34 12 1 
35 115 

Trans .  No. Temp. 

29 117 
28 112 
17 99 
25 86 

9 115 
30 103 
35 110 
37 105 
38 118 
48  112 
22 99 

TEXAS INSTRUMENTS UNION CARBIDE 

Trans.  No. Temp. 

36  117 
4 3  104 
46 113 
16 97 
34 113 
37 104 
38 97 
23 96 
33 97 

8 104 

Trans .  No. 

30 
3 1  
35 
4 

10 
26 
27 
32 
17 
19 
33 

Temp. 

115 
118 
114 
113 
112 
112 
114 
115 
110 
108 
110 

Figure  34. 2N930 TRANSISTOR THERMAL STUDY 
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F i g u r e  35.  Graph - Case  Temperature  vs Chip Tempera ture  - Fairchi ld  
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Figure  36. Graph - Case  Tempera ture  vs Chip Tempera ture  - Amelco 
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Figure  3 7 .  Graph - Case Temperature  vs  Chip Tempera ture  - Motorola 
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Figure  38.  Graph- Case Tempera ture  v s  Chip Tempera ture  - Union Carb. 
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Figure  39. Graph - Case  Tempera ture  vs  Chip Tempera ture  - Trans i t ron  
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Figure  40* Graph - Case  Temperature  v s  Chip Tempera ture  - Raytheon 
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F i g u r e  41. Graph - Case Temperature  vs  Chip Tempera ture  - Texas Instr. 
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Figure 42. BLACKBODY TEMPERATURE CHART 
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Figure  43. BLACKBODY CALIBRATION CURVES 
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Figure 45. 2N3781 TRANSISTOR. SCAN TRACES O F  LINE A20 AT 
VARIOUS POWER LEVELS 
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F igure  46. EMISSIVITY O F  SURFACE COATING 
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